Proposed Amendment to the Water Quality Control Plan – Los Angeles Region to incorporate the Los Angeles River and Tributaries Metals TMDL

Proposed for adoption by the California Regional Water Quality Control Board, Los Angeles Region on [Insert Date].

Amendments:

Table of Contents

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs) Summaries

7-13 Los Angeles River and Tributaries Metals TMDL

List of Figures, Tables and Inserts

Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)

Tables

7-13 Los Angeles River and Tributaries Metals TMDL

Table 7-13.1 Los Angeles River and Tributaries Metals TMDL: Elements

Table 7-13.2 Los Angeles River and Tributaries Metals TMDL: Implementation Schedule

Chapter 7. Total Maximum Daily Loads (TMDLs) Summaries, Section 7-13 (Los Angeles River and Tributaries Metals TMDL)

Add:

This TMDL was adopted by

The Regional Water Quality Control Board on [Insert Date].

This TMDL was approved by:

The State Water Resources Control Board on [Insert Date].

The Office of Administrative Law on [Insert Date].

The U.S. Environmental Protection Agency on [Insert Date].

The following table includes the key elements of this TMDL.

Table 7-13.1 Los Angeles River and Tributaries Metals TMDL: Elements

Element	Key Findings and Regulatory Provisions
Problem Statement	Segments of the Los Angeles River and its tributaries are on the Clean Water Act section 303(d) list of impaired waterbodies for copper, cadmium, lead, zinc, aluminum and selenium. The metals subject to this TMDL are toxic pollutants, and the existing water quality objectives for the metals reflect national policy that the discharge of toxic pollutants in toxic amounts be prohibited. When one of the metals subject to this TMDL is present at levels exceeding the existing numeric objectives, then the receiving water is toxic. The beneficial uses impaired by metals in the Los Angeles River and its tributaries are those associated with aquatic life and water supply, including wildlife habitat, rare, threatened or endangered species, warm freshwater habitat, wetlands, and groundwater recharge. TMDLs are developed for reaches on the 303(d) list and for reaches where recent data indicate additional impairments. Addressing the impairing metals throughout the Los Angeles River watershed will ensure that the metals do not contribute to an impairment elsewhere in the watershed. Metals allocations are therefore developed for upstream reaches and tributaries that drain to impaired reaches.
	These TMDLs address wet- and dry-weather discharges of copper, lead, zinc and selenium and wet-weather discharges of cadmium. Impairments related to cadmium only occur during wet weather. Impairments related to selenium are confined to Reach 6 and its tributaries. Dry-weather impairments related to zinc only occur in Rio Hondo Reach 1. The aluminum listing was based on water quality objectives set to support the municipal water supply beneficial use (MUN). MUN is a conditional use in the Los Angeles River watershed. The United States Environmental Protection Agency (USEPA) has determined that TMDLs are not required for impairments of conditional uses.
Numeric Target (Interpretation of the numeric water quality objective, used to calculate the waste load allocations)	Numeric water quality targets are based on the numeric water quality criteria established by the California Toxics Rule (CTR). The targets are expressed in terms of total recoverable metals. There are separate targets for dry and wet weather because hardness values and flow conditions in the Los Angeles River and tributaries vary between dry and wet weather. The dry-weather targets apply to days when the maximum daily flow in the River is less than 500 cfs. The wet-weather targets apply to days when the maximum daily flow in the River is equal to or greater than 500 cfs.
	The dry-weather targets for copper and lead are based on chronic CTR criteria. The dry-weather targets for zinc are based on acute CTR criteria. Copper, lead and zinc targets are dependent on hardness to adjust for site specific conditions and conversion factors to convert between dissolved and total recoverable metals. Copper and lead targets are based on 50 th percentile hardness values. Zinc targets are based on 10 th percentile hardness values. Site-specific copper conversion factors are applied immediately downstream of the Tillman and LA-Glendale

Element	Key Findings and I	Regulatory	Provision	1S		
	water reclamation p				conversion factor	ors are
	used for copper, lead	•	-			
		for selenium is independent of hardness or conversion factors. Dry-weather conversion factors:				
	D					
	Default	Below Til			ow LA-Glendale	WRP
	Copper 0.96		0.7	4		0.80
	Lead 0.79					
	Zinc 0.61					
	Dry-weather nume	ric targets (μg total 1	recovei	rable metals/L)	
		Cu	Pb	Zn	Se	
	Reach 5, 6					
	and Bell Creek	30	19		5	
	Reach 4	26	10			
	Reach 3					
	above LA-Glendale					
	WRP and Verdugo	23	12			
	Reach 3 below		· <u> </u>			
	LA-Glendale WRP	26	12			
	Burbank Western					
	Channel (above WR	P) 26	14			
	Burbank Western					
	Channel (below WR	P) 19	9.1			
	Reach 2					
	and Arroyo Seco	22	11			
	Reach 1	23	12			
	Compton Creek	19	8.9			
	Rio Hondo	13	5.0	131		
	Monrovia Canyon		8.2			
	The wet-weather tar					
	on acute CTR criteri		_			
	water collected at t					
	copper, lead and zin			_		
	values to total reco					
	CTR default convers					
	target for selenium is	s independe	nt of hard	ness or	conversion facto	ors.
	W	et-weather	conversi	on fact	tors:	
	Cadmium	0.94				
	Copper	0.65				
	Lead	0.82				
	Zinc	0.61				
	Wet-weather nu	ımeric targ	ets (µg to	tal rec	overable metals/	/L)
	Ca	Cu	Pb	Zn	Se	
	3.1	17	62	159	5	

Element	Key Findings and Regulatory Provisions
Source Analysis	There are significant differences in the sources of metals loadings during dry weather and wet weather. During dry weather, most of the metals loadings are in the dissolved form. The three major publicly owned treatment works (POTWs) that discharge to the river (Tillman WRP, LA-Glendale WRP, and Burbank WRP) constitute the majority of the flow and metals loadings during dry weather. The storm drains also contribute a large percentage of the loadings during dry weather because although their flows are typically low, concentrations of metals in urban runoff may be quite high. The remaining portion of the dry weather flow and metals loadings represents a combination of tributary flows, groundwater discharge, and flows from other permitted NPDES discharges within the watershed.
	During wet weather, most of the metals loadings are in the particulate form and are associated with wet-weather storm water flow. On an annual basis, storm water contributes about 40% of the cadmium loading, 80% of the copper loading, 95% of the lead loading and 90% of the zinc loading. This storm water flow is permitted through two municipal separate storm sewer system (MS4) permits, a separate Caltrans MS4 permit, a general construction storm water permit and a general industrial storm water permit.
	Nonpoint sources of metals may include tributaries that drain the open space areas of the watershed. Direct atmospheric deposition of metals on the river is also a small source. Indirect atmospheric deposition on the land surface that is washed off during storms is a larger source, which is accounted for in the estimates of storm water loadings.
	The sources of selenium appear to be related to natural levels of selenium in soils in the upper watershed. Separate studies are underway to evaluate whether selenium levels represent a "natural condition" for this watershed.
Loading Capacity	Dry Weather
	Dry-weather TMDLs are developed for the following pollutant waterbody combinations (allocations are developed for upstream reaches and tributaries to meet TMDLs in downstream reaches):
	• Copper for the Los Angeles River Reaches 1, 2, 3, 4, and 5, Burbank Channel, Compton Creek, Tujunga Wash, Rio Hondo Reach 1.
	• Lead for the Los Angeles River Reaches 1, 2, 3, 4, and 5, Burbank Channel, Rio Hondo Reach 1, Compton Creek, Monrovia Canyon Creek.
	• Zinc for Rio Hondo Reach 1.
	 Selenium for Reach 6, Aliso Creek, Dry Canyon Creek, McCoy Canyon Creek.
	For dry weather, loading capacities are equal to reach-specific numeric targets multiplied by reach-specific critical dry-weather flows.

Element	Key Findings and Regulatory Provisions
	Summing the critical flows for each reach and tributary, the critical
	flow for the entire river is 203 cfs, which is equal to the combined
	design flow of the three POTWs (169 cfs) plus the median flow from
	the storm drains and tributaries (34 cfs). The median storm drain and
	tributary flow is equal to the median flow at Wardlow (145 cfs) minus
	the existing median POTW flow (111 cfs). The dry-weather loading
	capacities for each impaired reach include the critical flows for
	upstream reaches. The dry-weather loading capacity for Reach 5
	includes flows from Reach 6 and Bell Creek, the dry-weather loading
	capacity for Reach 3 includes flows from Verdugo Wash, and the dry-
	weather loading capacity for Reach 2 includes flows from Arroyo Seco.
	Dry weather leading conecity (total recoverable metals)

Dry-weather loading capacity (total recoverable metals)

	Critical Flow (cfs)	Cu (kg/day)	Pb (kg/day)	Zn (kg/day)
LA River Reach 5	8.74	0.65	0.39	
LA River Reach 4	129.13	8.1	3.2	
LA River Reach 3	39.14	2.3	1.01	
LA River Reach 2	4.44	0.16	0.084	
LA River Reach 1	2.58	0.14	0.075	
Tujunga Wash	0.15	0.007	0.0035	
Burbank Channel	17.3	0.80	0.39	
Rio Hondo	0.50	0.015	0.0061	0.16
Compton Creek	0.90	0.041	0.020	

No dry-weather loading capacities are calculated for lead in Monrovia Canyon Creek or selenium in Reach 6 or its tributaries. Concentration-based allocations are assigned for these metals in these reaches.

Wet Weather

Wet-weather TMDLs are calculated for cadmium, copper, lead, and zinc in Reach 1. Allocations are developed for all upstream reaches and tributaries to meet these TMDLs.

Wet-weather loading capacities are based on a load-duration curve approach. Loading capacities are calculated by multiplying daily storm volumes by the wet-weather numeric target for each metal. The resulting curves identify the load allowance for a given flow.

Wet-weather loading capacity (total recoverable metals)

Metal	Load Duration Curve (kg/day)	
Cadmium	Daily storm volume x 3.1 µg/L	
Copper	Daily storm volume x 17 μg/L	
Lead	Daily storm volume x 62 µg/L	
Zinc	Daily storm volume x 159 µg/L	

Element	Key Findings and Regulatory Provisions						
Load Allocations (for nonpoint	Dry Weather						
sources)	Dry-weather nonpoint source load allocations (LAs) for copper and						
	•	•		deposition to the rive			
	* * * *	•		•			
	Dry-weather open space load allocations are equal to the critical flow for the upper portion of tributaries that drain open space, multiplied by						
	the numeric targets for these tributaries.						
	Open spa	ace dry-weather	LAs (total reco	verable metals)			
		Critical Flow	Cu (kg/day)	Pb (kg/day)			
	Tujunga Wash	0.12	0.0056	0.0028			
	Arroyo Seco	0.33	0.018	0.009			
	Load allocations	s for direct atmos	pheric deposition	n to the entire river a			
				per, 2 kg/year for lea			
				ach reach and tributa			
	based on their le	ength. The ratio	of the length of	each river segment			
	the total length	of the river is	multiplied by the	he estimates of dire			
	atmospheric loading to the entire river.						
	Direct air deposition dry-weather LAs (total recoverable metals)						
		Cu (kg/day		y) Zn(kg/day)			
	LA River Reach		2.2×10^{-4}				
	LA River Reach		2.4×10^{-4}				
	LA River Reach		5.4×10^{-4}				
	LA River Reach		4.03×10^{-4}				
	LA River Reach		9.5×10^{-4}				
	LA River Reach		2.96×10^{-4}				
	Bell Creek	2.98×10^{-4}	1.99×10^{-4}				
	Tujunga Wash		4.9×10^{-4}				
	Verdugo Wash	4.7×10^{-4}	3.2×10^{-4}				
	Burbank Channe		4.7×10^{-4}				
	Arroyo Seco	7.3×10^{-4}	4.9×10^{-4}	2.1-10-3			
	Rio Hondo	6.4×10^{-4} 6.5×10^{-4}	$4.2x10^{-4}$ $4.3x10^{-4}$	2.1×10^{-3}			
	Compton Creek	0.3X10	4.3X10				
	A dry-weather c	concentration-base	ed load allocatio	n for lead equal to the			
	dry-weather nur	meric target (8.2	μg/L) applies	to Monrovia Canyo			
			_	a particular nonpoi			
	source or group	of nonpoint source	ces.				
				on for selenium equ			
				signed to Reach 6 an			
				igned to a particula			
	nonpoint source	or group of nonp	oint sources.				
	Wet Weather						
	l						

6 March 28, 2005

Wet-weather load allocations for open space are equal to the percent metals loading from open space (predicted by the wet-weather model)

Element	Key Findings and Regulatory Provisions					
	multiplied by the total loading capacity, then by the ratio of open space located outside the storm drain system to the total open space area. There is no load allocation for cadmium because open space is not					
	believed to be a source of the wet-weather cadmium impairment in Reach 1.					
	Wet-weather open space LAs (total recoverable metals)					
	Metal Load Allocation (kg/day)					
	Copper 2.6x10 ⁻¹⁰ μg /L/day x daily storm volume(L) Lead 2.4x10 ⁻¹⁰ μg /L/day x daily storm volume(L) Zinc 1.4x10 ⁻⁹ μg /L/day x daily storm volume(L)					
	Wet-weather load allocations for direct atmospheric deposition are equal to the percent area of the watershed comprised by surface water (0.2%) multiplied by the total loading capacity.					
	Wet-weather direct air deposition LAs (total recoverable metals)					
	Metal Load Allocation (kg/day)					
	Cadmium $6.2 \times 10^{-10} \mu g / L / day x daily storm volume(L)$					
	Copper 3.4x10 ⁻¹⁰ µg /L/day x daily storm volume(L) Lead 1.2x10 ⁻¹⁰ µg /L/day x daily storm volume(L)					
	Lead $1.2 \times 10^{-10} \mu g / L / day x daily storm volume(L)$ Zinc $3.2 \times 10^{-9} \mu g / L / day x daily storm volume(L)$					
	A wet-weather concentration-based load allocation for selenium equal to the dry-weather numeric target (5 μ g/L) is assigned to Reach 6 and its tributaries. The load allocation is not assigned to a particular nonpoint source or group of nonpoint sources.					
Waste Load Allocations (for	Dry Weather					
point sources)	Dry-weather point source waste load allocations (WLAs) apply to the three POTWs (Tillman, Glendale, and Burbank). A grouped waste load allocation applies to the storm water permitees (Los Angeles County MS4, Long Beach MS4, Caltrans, General Industrial and General Construction), which is calculated by subtracting load allocations (and waste load allocations for reaches with POTWs) from the total loading capacity. Concentration-based waste load allocations are developed for other point sources in the watershed.					
	Mass- and concentration-based waste load allocations for Tillman, Los Angeles-Glendale and Burbank WRPs are developed to meet the dryweather targets for copper and lead in Reach 4, Reach 3 and the Burbank Western Channel, respectively.					

ement	Key Findings and Reg	gulatory Provi	sions		
	DOTW I	41 3377 4 /			. 1)
	POTW dry-we			verable me	tals):
		Cu	Pb		
	Tillman				
	Concentration-based (µ	•	10		
	Mass-based (kg/day)	7.8	3.03		
	Glendale				
	Concentration-based (µ	-	12		
	Mass-based (kg/day)	2.0	0.88		
	Burbank	W.) 40	0.4		
	Concentration-based (µ		9.1		
	Mass-based (kg/day)	0.64	0.31		
	Dry-weather waste loa drain flows (critical floopen space flows) mul the contribution from d	ows minus me tiplied by reac	dian POT h-specific	W flows m	inus medi
	Storm water dry-	-		coverable	metals)
		Critical Flow	Cu	Pb	Zn
		(cfs)	(kg/day)	(kg/day)	(kg/day)
	LA River Reach 6	7.20	0.53	0.33	· U V/
	LA River Reach 5	0.75	0.05	0.03	
	LA River Reach 4	5.13	0.32	0.12	
	LA River Reach 3	4.84	0.06	0.03	
	LA River Reach 2	3.86	0.13	0.07	
	LA River Reach 1	2.58	0.14	0.07	
	Bell Creek	0.79	0.06	0.04	
	Tujunga Wash	0.03	0.001	0.0002	
	Burbank Channel	3.3	0.15	0.07	
	Verdugo Wash	3.3	0.18	0.10	
	Arroyo Seco	0.25	0.01	0.01	
	1 2				
	Rio Hondo	0.50	()()1	() ()(h	0.016
	Rio Hondo Compton Creek	0.50 0.90	0.01 0.04	0.006 0.02	0.016
		0.90 allocation is er permittees d	0.04 assigned uring dry	0.02 to all inweather. The	dustrial an ne remainin
	Compton Creek A zero waste load construction storm wat waste load allocations a Concentration-based d	0.90 allocation is er permittees dare shared by the ry-weather wa	0.04 assigned uring dry the MS4 perste load a	0.02 to all increase and the control of the contro	dustrial anne remaining d'Caltrans.
	A zero waste load construction storm wat waste load allocations a	0.90 allocation is er permittees dare shared by the ry-weather wather wather between the control of the control	0.04 assigned uring dry ne MS4 perste load auther than	0.02 to all increase and the storm wate	dustrial ar ne remainir d Caltrans. apply to tl

Element	Key Findings and Regulatory Provisions					
	Other dry-weathe	Other dry-weather WLAs (µg total recoverable metals/l				
		Cu	Pb	Zn	Se	
	Reach 5, 6					
	and Bell Creek	30	19		5	
	Reach 4	26	10			
	Reach 3					
	above LA-Glendale					
	WRP and Verdugo	23	12			
	Reach 3 below					
	LA-Glendale WRP	26	12			
	Burbank Western					
	Channel(above WRP)	26	14			
	Burbank Western					
	Channel (below WRP)	19	9.1			
	Reach 2					
	and Arroyo Seco	22	11			
	Reach 1	23	12			
	Compton Creek	19	8.9	•		
	Rio Hondo	13	5.0	131		

Wet Weather

During wet-weather, POTW allocations are based on dry-weather instream numeric targets because the POTWs exert the greatest influence over in-stream water quality during dry weather. During wet weather, the concentration-based dry-weather waste load allocations apply but the mass-based dry-weather allocations do not apply when influent flows exceed the design capacity of the treatment plants. Additionally, the POTWs are assigned reach-specific allocations for cadmium and zinc based on dry weather targets to meet the wet-weather TMDLs in Reach 1.

POTW wet-weather WLAs (total recoverable metals):

	Cd	Cu	Pb	Zn
Tillman				
Concentration-based (µg/L)	4.7	26	10	212
Mass-based (kg/day)	1.4	7.8	3.03	64
Glendale				
Concentration-based (µg/L)	5.3	26	12	253
Mass-based (kg/day)	0.40	2.0	0.88	19
Burbank				
Concentration-based (µg/L)	4.5	19	9.1	212
Mass-based (kg/day)	0.15	0.64	0.31	7.3

Wet-weather waste load allocations for the grouped storm water permittees are equal to the total loading capacity minus the load

Element	Key Findings and Reg	gulatory Provisions			
		ace and direct air deposition and the waste load			
	allocations for the POTWs.				
	Storm water wet-weather WLAs (total recoverable metals):				
	Metal	Waste Load Allocation (kg/day)			
	Cadmium	3.1×10^{-9} x daily volume(L) – 1.95			
	Copper	1.7×10^{-8} x daily volume (L) – 10			
	Lead	6.2×10^{-8} x daily volume (L) – 4.2			
	Zinc	1.6×10^{-7} x daily volume (L) – 90			
	The combined storm	water waste load allocation is apportioned			
		torm water categories by their percent area of the			
		d served by storm drains.			
	portion of the watershe	a sarrou of scorn drams.			
	MS4 wet-wear	ther WLAs (total recoverable metals):			
	Metal	Waste Load Allocation (kg/day)			
	Cadmium	$2.8 \times 10^{-9} \text{ x daily volume}(L) - 1.8$			
	Copper	1.5×10^{-8} x daily volume (L) – 9.5			
	Lead	5.6×10^{-8} x daily volume (L) – 3.85			
	Zinc	$1.4 \times 10^{-7} \text{ x daily volume (L)} - 83$			
	Caltrans wet-we	eather WLAs (total recoverable metals):			
	Metal	Waste Load Allocation (kg/day)			
	Cadmium	$5.3 \times 10^{-11} \text{ x daily volume(L)} - 0.03$			
	Copper	$2.9 \times 10^{-10} \text{ x daily volume (L)} - 0.2$			
	Lead	1.06×10^{-9} x daily volume (L) – 0.07			
	Zinc	2.7×10^{-9} x daily volume (L) – 1.6			
	General Industrial w	ret-weather WLAs (total recoverable metals):			
	Metal	Waste Load Allocation (kg/day)			
	Cadmium	1.6×10^{-10} x daily volume(L) -0.11			
	Copper	8.8×10^{-10} x daily volume (L) -0.5			
	Lead	3.3×10^{-9} x daily volume (L) -0.22			
	Zinc	8.3×10^{-9} x daily volume (L) – 4.8			
	General Construction	wet-weather WLAs (total recoverable metals):			
	Metal	Waste Load Allocation (kg/day)			
	Cadmium	$5.9 \times 10^{-11} \text{ x daily volume}(L) - 0.04$			
	Copper	3.2×10^{-10} x daily volume (L) – 0.2			
	Lead	$1.2 \times 10^{-9} \text{ x daily volume (L)} - 0.08$			
	Zinc	$3.01 \times 10^{-9} \text{ x daily volume (L)} - 4.8$			
	construction storm wa	permittee under the general industrial and atter permits will receive individual waste load and the total acres of their facility.			

Element	Key Findings and Re	egulatory Provisi	ions	
	Individual General Construction or Industrial Permittees WLAs (total recoverable metals):			
	Metal		Allocation (g/da	
	Cadmium		ily volume(L) –	
	Copper	4.2x10 x da	ily volume (L) -	- 2.6x10°
	Lead Zinc		aily volume (L) - ily volume (L) -	
	Zilic	3.9X10 X ua	ily volume (L) –	- 2.2810
	Concentration-based	wet-weather was	te load allocation	ons apply to the
	minor and general NI			
	that discharge to the Los Angeles River and its tributaries.			
	Wet-weather WLA	As for other pern	nits (total recov	erable metals)
	Cadmium (µg /L)	Copper (µg/L)	Lead (µg/L)	Zinc (µg/L)
	3.1	17	62	159
Margin of Safety	There is an implicit conservative values of dissolved fraction du TMDL includes a conditions separately assigning allocations the use of the wet-we space can be applie overestimate loads fro load allocations to the	for the translation uring the dry and margin of safe from dry-weather for two distinct eather model to can deat to the margin om open spaces, t	n from total red wet periods. ty by evaluation conditions, where the condition is also also because the condition of safety because the condition the condition of the condition is a safety because the condition of the condition is a safety because the condition of the condition is a safety because the condition of the condition is a safety because the condition of the condition of the condition is a safety because the condition of the condition	coverable to the In addition, the ng wet-weather hich is in effect, ns. Furthermore, ocations for open ause it tends to
Implementation	The regulatory mechanisms used to implement the TMDL will in the Los Angeles County Municipal Storm Water NPDES P (MS4), the City of Long Beach MS4, the Caltrans storm water possible major NPDES permits, minor NPDES permits, general NI permits, general industrial storm water NPDES permits, and general construction storm water NPDES permits. Nonpoint sources we regulated through the authority contained in sections 13263 and 1 of the Water Code, in conformance with the State Water Reson Control Board's Nonpoint Source Implementation and Enforce Policy (May 2004). Each NPDES permit assigned a WLA share reopened or amended at reissuance, in accordance with applicable to incorporate the applicable WLAs as a permit requirement. The Regional Board shall reconsider this TMDL in five years after the state of the property of th		NPDES Permit rm water permit, general NPDES nits, and general sources will be 3263 and 13269 Water Resources and Enforcement a WLA shall be applicable laws, ment.	
	effective date of the special studies. Table the responsible permit	TMDL based on a 7-13-2 presents ttees.	n additional dat the implementat	a obtained from tion schedule for
	Non storm water NI minor, and general p		ncluding POTV	Vs, other major,
	Permit writers may effluent limits for th			

Element Key Findings and Regulatory Provisions applying the effluent limitation procedures in Section 1.4 of the State Water Resources Control Board's Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California (2000) or other applicable engineering practices authorized under federal regulations. Compliance schedules may be established in individual NPDES permits, allowing up to 5 years within a permit cycle to achieve compliance. Compliance schedules may not be established in

general NPDES permits. A discharger that can not comply immediately with effluent limitations specified to implement waste load allocations will be required to apply for an individual permit in order to demonstrate the need for a compliance schedule.

General industrial and construction storm water permits:

The Regional Board will develop watershed-specific general industrial and construction storm water permits to incorporate waste load allocations. It is anticipated that the dry-weather waste load allocations equal to zero will be implemented by requiring improved best management practices (BMPs) to eliminate the discharge of non-storm water flows. However, permit writers must provide adequate justification and documentation to demonstrate that specified BMPs are expected to result in attainment of the numeric waste load allocations.

The general storm water permits shall contain a model monitoring and reporting program to evaluate BMP effectiveness. A permittee enrolled under the general permits shall have the choice of conducting individual monitoring based on the model program or participating in a group monitoring effort. MS4 permittees are encouraged to take the lead in group monitoring efforts for industrial and construction facilities within their jurisdiction because compliance with waste load allocations by these facilities will in many cases translate to reductions in metals loads to the MS4 system.

General industrial and construction storm water permittees are allowed interim wet-weather concentration-based waste load allocations based on benchmarks contained in EPA's Storm Water Multi-sector General Permit for Industrial Activities. The interim waste load allocations apply to all industry sectors and apply for a period not to exceed ten years from the effective date of the TMDL.

Interim wet-weather WLAs for general industrial and construction storm water permittees (total recoverable metals)*

Cd	(µg/L)	Cu(µg/L)	$Pb(\mu g/L)$	$Zn(\mu g/L)$
	15.9	63.6	81.6	117

^{*}Based on USEPA benchmarks for industrial storm water sector

In the first five years from the effective date of the TMDL, interim waste load allocations will not be interpreted as enforceable permit limits. If monitoring demonstrates that interim waste load allocations are being exceeded, the permittee shall evaluate existing and potential BMPs, including structural BMPs, and implement any necessary BMP

Element	Key Findings and Regulatory Provisions
	improvements. After five years from the effective date of the TMDL, interim waste load allocations shall be translated into enforceable permit limits. In addition, permittees shall begin an iterative BMP process to meet final waste load allocations. Concentration-based permit limits may be set to achieve the mass-based waste load allocations. These concentration-based limits would be equal to the concentration-based waste load allocations assigned to the other NPDES permits. Permittees shall comply with final waste load allocations no later than 10 years from the effective date of the TMDL.
	MS4 and Caltrans permits
	Applicable CTR limits are being met most of the time during dry weather, with episodic exceedances. Due to the expense of obtaining accurate flow measurements required for calculating loads, concentration-based permit limits may apply during dry weather. These concentration-based limits would be equal to dry-weather reach-specific numeric targets.
	Each municipality and permittee will be required to meet the storm water waste load allocations shared by the two MS4s and Caltrans permittees at the designated TMDL effectiveness monitoring points. A phased implementation approach, using a combination of non-structural and structural BMPs may be used to achieve compliance with the waste load allocations. The administrative record and the fact sheets for the MS4 and Caltrans storm water permits must provide reasonable assurance that the BMPs selected will be sufficient to implement the waste load allocations.
	The implementation schedule for the MS4 and Caltrans permittees consists of a phased approach, with compliance to be achieved in prescribed percentages of the watershed, with total compliance to be achieved within 22 years.
Seasonal Variations and Critical Conditions	Seasonal variations were addressed by developing separate waste load allocations for dry weather and wet weather.
	For dry weather, critical flows for each reach were established from the long-term flow records (1988-2000) generated by stream gages located throughout the watershed and in selected reaches. The median dry-weather urban runoff plus the combined design capacity of the three major POTWs is selected as the critical flow since most of the flow is from effluent which results in a relatively stable dry-weather flow condition. In areas where there are no flow records, an area-weighted approach was used to assign flows to these reaches.
	Wet-weather allocations were developed using the load-duration curve concept. The total wet-weather waste load allocation for wet weather varies by storm. Given this variability in storm water flows, no justification was found for selecting a particular sized storm as the critical condition.

Element	Key Findings and Regulatory Provisions		
Compliance Monitoring and Special Studies			
	Ambient Monitoring		
	An ambient monitoring program is necessary to assess water quality throughout the Los Angeles River and its tributaries and the progress being made to remove the metals impairments. The MS4 and Caltrans storm water NPDES permittees are jointly responsible for implementing the ambient monitoring program. The responsible agencies shall sample for total recoverable metals, dissolved metals including cadmium and zinc, and hardness once per month at each ambient monitoring location at least until the TMDL is re-considered at year 5. The reported detection limits shall be below the hardness adjusted CTR criteria. Eight ambient monitoring points currently exist in the Los Angeles River and its tributaries as part of the City of Los Angeles Watershed Monitoring Program. These monitoring points could be used to assess water quality.		
	Ambient		
	Monitoring PointsReaches and TributariesWhite Oak SepulvedaLA River 6, Aliso Creek, McCoy Creek, Bell CreekTujungaLA River 5, Bull CreekTujungaLA River 4, Tujunga WashColoradoLA River 3, Burbank Western Channel, Verdugo WashFigueroaLA River 3, Arroyo SecoWashingtonLA River 2RosecransLA River 2, Rio Hondo (gage just above Rio Hondo)WillowLA River 1, Compton Creek (gage at Wardlow)		
	TMDL Effectiveness Monitoring		
	The MS4 and Caltrans storm water NPDES permittees are jointly responsible for assessing progress in reducing pollutant loads to achieve the TMDL. The MS4 and Caltrans storm water NPDES permittees are required to submit for approval by the Executive Officer a coordinated monitoring plan that will demonstrate the effectiveness of the phase		

14 March 28, 2005

be used as effectiveness monitoring locations.

implementation schedule for this TMDL (See Table 7-13.2), which requires attainment of the applicable waste load allocations in prescribed percentages of the watershed over a 22-year period. The monitoring locations specified for the ambient monitoring program may

Element	Key Findings and Regulatory Provisions		
	The MS4 and Caltrans storm water NPDES permittees will be found to be effectively meeting dry-weather waste load allocations if the instream pollutant concentration or load at the first downstream monitoring location is equal to or less than the corresponding concentration- or load-based waste load allocation. Alternatively, effectiveness of the TMDL may be assessed at the storm drain outlet based on the waste load allocation for the receiving water. For storm drains that discharge to other storm drains, the waste load allocation will be based on the waste load allocation for the ultimate receiving water for that storm drain system. The MS4 and Caltrans storm water NPDES permittees will be found to be effectively meeting wet-weather waste load allocations if the loading at the downstream monitoring location is equal to or less then the wet-weather waste load allocation.		
	The Tillman, LA-Glendale, and Burbank POTWs, and the remaining permitted discharges in the watershed will have effluent monitoring requirements to ensure compliance with waste load allocations.		
	Special Studies		
	The implementation schedule (see Table 7-13.2) allows time for special studies that may serve to refine the estimate of loading capacity, waste load and/or load allocations, and other studies that may serve to optimize implementation efforts. The Regional Board will re-consider the TMDL in the fifth year after the effective date in light of the findings of these studies. Studies may include:		
	• Refined flow estimates for the Los Angeles River mainstem and tributaries where there presently are no flow gages and improved gaging of low-flow conditions.		
	• Water quality measurements, including a better assessment of hardness, water chemistry data (e.g., total suspended solids and organic carbon) that may refine the use of metals partitioning coefficients.		
	• Effects studies designed to evaluate site-specific toxic effects of metals on the Los Angeles River and its tributaries.		
	Source studies designed to characterize loadings from background or natural sources		
	• Review of water quality modeling assumptions including the relationship between metals and total suspended solids as expressed in the potency factors and buildup and washoff and transport coefficients.		
	• Evaluation of aerial deposition and sources of aerial deposition.		
	POTWs that are unable to demonstrate compliance with final waste load allocations must conduct source reduction audits within two years of the effective date of the TMDL.		
	POTWs that will be requesting the Regional Board to extend		

Element	Key Findings and Regulatory Provisions	
	their implementation schedule to allow for the installation of	
	advanced treatment must prepare work plans, with time schedules to allow for the installation advanced treatment. The work plan must be submitted within four years from the effective date of the TMDL.	

Table 7-13.2 Los Angeles River and Tributaries Metals TMDL: Implementation Schedule

Date	Action		
Effective date of TMDL	Regional Board permit writers shall incorporate waste load allocations into NPDES permits. Waste load allocations will be implemented through NPDES permit limits in accordance with the implementation schedule contained herein, at the time of permit issuance, renewal, or re-opener.		
4 years after effective date of the TMDL	Responsible jurisdictions and agencies shall provide to the Regional Board results of the special studies. POTWs that will be requesting the Regional Board to extend their implementation schedule to allow for the installation of advanced treatment must submit work plans.		
5 years after effective date of the TMDLs	The Regional Board shall reconsider this TMDL to re-evaluate the waste load allocations and the implementation schedule.		
NON-STORM WATER NPDES PERMITS (INCLUDING POTWS, OTHER MAJOR, MINOR, AND GENERAL PERMITS)			
Upon permit issuance, renewal, or re-opener	The non-storm water NPDES permits shall achieve waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Compliance schedules may allow up to 5 years in individual NPDES permits to meet permit requirements. Compliance schedules may not be established in general NPDES permits. If a POTW demonstrates that advanced treatment will be required to meet final waste load allocations, the Regional Board will consider extending the implementation schedule to allow the POTW up to 10 years from the effective date of the TMDL to achieve compliance with the final WLAs.		
GENERAL INDUSTRIAL STORM WATER AND GENERAL CONSTRUCTION STORM WATER PERMITS			
Upon permit issuance, renewal, or re-opener	The general industrial and construction storm water permitees shall achieve dry-weather waste load allocations of zero, which shall be expressed as NPDES water quality-based effluent limitations specified in accordance with federal regulations and state policy on water quality control. Permittees shall begin to install and test BMPs to meet the interim wet-weather WLAs.		
5 years after effective date of the TMDLs	The general industrial and construction storm water permits shall achieve interim wet-weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations. Permits shall allow for an iterative BMP process including BMP effectiveness monitoring to achieve compliance with permit requirements.		

Date	Action
10 years after the effective date of TMDL	The general industrial and construction storm water permits shall achieve final wet-weather waste load allocations, which shall be expressed as NPDES water quality-based effluent limitations. Permits shall allow iterative BMP process including BMP effectiveness monitoring to achieve compliance with permit requirements.
MS4 AN	D CALTRANS STORM WATER PERMITS
12 months after the effective date of the TMDL	In response to an order issued by the Executive Officer, the MS4 and Caltrans storm water NPDES permittees must submit a coordinated monitoring plan, to be approved by the Executive Officer, which includes both TMDL effectiveness monitoring and ambient monitoring. Once the coordinated monitoring plan is approved by the Executive Officer ambient monitoring shall commence. The MS4 and Caltrans storm water permittees may elect to identify jurisdictional groups to coordinate monitoring efforts.
12 months after effective date of TMDL (Draft Report) 16 months after effective date of TMDL (Final Report)	The MS4 and Caltrans storm water NPDES permittees shall provide a written report to the Regional Board outlining the drainage areas to be addressed and how these areas will achieve compliance with the waste load allocations. The report shall include implementation methods, an implementation schedule, proposed milestones, and any applicable revisions to the TMDL effectiveness monitoring plan.
6 years after effective date of the TMDL	The MS4 and Caltrans storm water NPDES permittees shall demonstrate that 50% of the total drainage area served by the MS4 system is effectively meeting the dry-weather waste load allocations and 25% of the total drainage area served by the storm drain system is effectively meeting the wet-weather waste load allocations.
14 years after effective date of the TMDL	The MS4 and Caltrans storm water NPDES permittees shall demonstrate that 75% of the total drainage area served by the storm drain system is effectively meeting the dry-weather WLAs.
18 years after effective date of the TMDL	The MS4 and Caltrans storm water NPDES permittees shall demonstrate that 100% of the total drainage area served by the storm drain system is effectively meeting the dry-weather WLAs and 50% of the total drainage area served by the storm drain system is effectively meeting the wet-weather WLAs.
22 years after effective date of the TMDL	The MS4 and Caltrans storm water NPDES permittees shall demonstrate that 100% of the total drainage area served by the storm drain system is effectively meeting both the dry-weather and wetweather WLAs.